Maltsev conditions and directed graphs

Miklós Maróti
University of Szeged

Melbourne, 2013. July 15-19.

Digraphs, HOMOMORPHISMS AND POLYMORPHISMS

Definition

A digraph is a pair $\mathbb{G}=(G ; \rightarrow)$, where G is the set of vertices and $\rightarrow \subseteq G^{2}$ is the set of edges.

Definition

A homomorphism from \mathbb{G} to \mathbb{H} is a map $f: G \rightarrow H$ that preserves edges:

$$
a \rightarrow b \text { in } \mathbb{G} \quad \Longrightarrow \quad f(a) \rightarrow f(b) \text { in } \mathbb{H} .
$$

$\operatorname{Hom}(\mathbb{G}, \mathbb{H})$ is the set of all homomorphisms from \mathbb{G} to \mathbb{H}.

Definition

The clone of polymorphisms of \mathbb{G} is $\operatorname{Hom}(\mathbb{G})=\bigcup_{n=1}^{\infty} \operatorname{Hom}\left(\mathbb{G}^{n}, \mathbb{G}\right)$.

GUMM POLYMORPHISMS OF DIGRAPHS

Theorem (Larose, Zádori; 1997)

If a finite poset (reflexive, transitive, antisymmetric digraph) has Gumm polymorphisms

$$
\begin{aligned}
x & \approx d_{0}(x, y, z), \\
d_{i}(x, y, x) & \approx x \text { for all } i, \\
d_{i}(x, y, y) & \approx d_{i+1}(x, y, y) \text { for even } i, \\
d_{i}(x, x, y) & \approx d_{i+1}(x, x, y) \text { for odd } i, \\
d_{n}(x, y, y) & \approx p(x, y, y), \text { and } \\
p(x, x, y) & \approx y,
\end{aligned}
$$

then it has a near-unanimity polymorphism

$$
n(y, x, \ldots, x) \approx \cdots \approx n(x, \ldots, x, y) \approx x
$$

GUMM POLYMORPHISMS OF DIGRAPHS

Theorem (Larose, Loten, Zádori; 2005)

If a finite reflexive and symmetric digraph has Gumm polymorphisms, then it has a near-unanimity polymorphism.

Theorem (M, Zádori; 2012)

If a finite reflexive digraph has Gumm polymorphisms, then it has a near-unanimity polymorphism and totally symmetric polymorphisms

$$
\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\} \Longrightarrow t\left(x_{1}, \ldots, x_{n}\right) \approx t\left(y_{1}, \ldots, y_{n}\right)
$$

for all arities.

Theorem

If a finite symmetric digraph has Gumm polymorphisms, then it has a near-unanimity polymorphism.

How far can we push this?

Theorem (Kazda; 2011)

If a finite digraph has a Maltsev polymorphism

$$
p(x, x, y) \approx p(y, x, x) \approx y
$$

then it admits a majority polymorphism

$$
m(y, x, x) \approx m(x, y, x) \approx m(x, x, y) \approx x
$$

Theorem (Bulín, Delić, Jackson, Niven; 2013)

For every finite relational structure \mathbb{A} there exists a finite directed graph \mathbb{G}, such that almost all Maltsev conditions (Taylor term, Willard terms, Hobby-McKenzie terms, Gumm terms, edge term, Jonsson terms, near-unanimity term, but not Maltsev term) hold equivalently by \mathbb{A} and \mathbb{G}.

Connectivity

Definition

\mathbb{G} is strongly connected if for any $a, b \in G$ there exists a directed path $a=a_{0} \rightarrow a_{1} \rightarrow \cdots \rightarrow a_{n}=b$ of length $n \geq 0 . \mathbb{G}$ is connected if for any $a, b \in G$ there exists an oriented path $a=a_{0} \rightarrow a_{1} \leftarrow \cdots \rightarrow a_{n}=b$ of length $n \geq 0$ where the arrows can point either way. The digraph \mathbb{G} is smooth, if its edge relation is subdirect (no sources and sinks).

Definition

The [strong, smooth] components of \mathbb{G} are the maximal [strong, smooth] induced subgraphs of \mathbb{G}.

Definition

The algebraic length of a directed path is the number of forward edges minus the number of backward edges. The algebraic length of \mathbb{G} is the smallest positive algebraic length of oriented cycles (closed paths) of \mathbb{G}.

Algebraic length 1

Proposition

If \mathbb{G}, \mathbb{H} are connected, smooth and \mathbb{G} has algebraic length 1 , then $\mathbb{G} \times \mathbb{H}$ is connected and smooth.

Proof.

- for any $a \in G$ there exists an oriented cycle of algebraic length 1 going through a
- for any $a \rightarrow b$ in \mathbb{G} there exists an oriented path from a to b of algebraic length 0
- for any $x \in H,(a, x)$ and (b, x) are connected in $\mathbb{G} \times \mathbb{H}$

Proposition

If \mathbb{G} is smooth, algebraic length 1 and (strongly) connected, then \mathbb{G}^{n} is smooth, algebraic length 1 and (strongly) connected for all $n \geq 1$.

Cores

Definition

Write $\mathbb{G} \rightarrow \mathbb{H}$ iff there exists a homomorphism from \mathbb{G} to \mathbb{H}.

Proposition

\rightarrow is a quasi-order on the set of finite digraphs. If \mathbb{G} is a minimal member of the \leftrightarrow class of \mathbb{H}, then

- every endomorphism of \mathbb{G} is an automorphism,
- \mathbb{G} is uniquely determined up to isomorphism, and
- \mathbb{G} is isomorphic to a induced substructure of \mathbb{H}.

Definition

\mathbb{G} is a core if it has no proper endomorphism. The core of \mathbb{H} is the uniquely determined core structure in the \leftrightarrow class of \mathbb{H}.

The loop Lemma

Theorem (Barto, Kozik, Niven; 2008)

If \mathbb{G} is smooth, algebraic length 1 , and has a Taylor polymorphism, or equivalently a weak near-unanimity polymorphism

$$
w(x, \ldots, x) \approx x \quad \text { and } \quad w(y, x, \ldots, x) \approx \ldots \approx w(x, \ldots, x, y)
$$

then \mathbb{G} has a loop.

Corollary

The core of a smooth digraph with a Taylor polymorphism is a disjoint union of cycles.

Problem

Let \mathbb{G} be a smooth, connected, algebraic length 1 digraph that has Gumm polymorphisms. Does \mathbb{G} need to have a near-unanimity polymorphism?

MALTSEV DIGRAPHS AGAIN

Theorem

If $\mathbb{G}=(G ; E)$ is smooth, connected, algebraic length 1, and has Maltsev polymorphism, then it has join and meet polymorphisms.

Proof.

- $\alpha=E \circ E^{-1}$ and $\beta=E^{-1} \circ E$ are equivalence relations (congruences)
- case 1: $(a, b) \in \alpha \wedge \beta$ and $a \neq b$
- $r: \mathbb{G} \rightarrow \mathbb{G} \backslash\{b\}, r(x)=x$ for $x \neq b$ and $r(b)=a$ is a retraction
- by induction we have join and meet polymorphisms on $r(\mathbb{G})$
- we can extend them to \mathbb{G} by splitting $\{a, b\}$ into $a<b$
- case 2: $\alpha \wedge \beta=0$
- by induction the digraph $\mathbb{G} / \alpha=(G / \alpha ; E / \alpha)$ has join and meet
- the digraph $\mathbb{E} / \alpha=\left(E / \alpha ; \pi_{2} \circ \pi_{1}^{-1}\right)$ has join and meet
- the digraphs \mathbb{E} / α and \mathbb{G} are isomorphic via the map $\varphi: E / \alpha \rightarrow G$, $\varphi(x / \alpha, y / \alpha)=x / \beta \cap y / \alpha$

Exponentiation

Definition

Let $\mathbb{H}^{\mathbb{G}}$ be the digraph on the set H^{G} with edge relation $f \rightarrow g$ iff

$$
a \rightarrow b \text { in } \mathbb{G} \Longrightarrow f(a) \rightarrow g(b) \text { in } \mathbb{H} .
$$

Proposition

- $\operatorname{Hom}(\mathbb{G}, \mathbb{H})=\left\{f \in \mathbb{H}^{\mathbb{G}}: f \rightarrow f\right\}$
- $\mathbb{G}^{n}=\mathbb{G}^{\mathbb{L}_{n}}$ where $\mathbb{L}_{n}=(\{1, \ldots, n\} ;=)$
- $\left(\mathbb{H}^{\mathbb{G}}\right)^{\mathbb{F}}=\mathbb{H}^{\mathbb{G} \times \mathbb{F}}$
- $\mathbb{H}^{\mathbb{F}} \times \mathbb{G}^{\mathbb{F}}=(\mathbb{H} \times \mathbb{G})^{\mathbb{F}}$
- the composition map $\circ: \mathbb{H}^{\mathbb{G}} \times \mathbb{G}^{\mathbb{F}} \rightarrow \mathbb{H}^{\mathbb{F}}$ is a homomorphism
- If $f \rightarrow g$ in $\mathbb{H}^{\mathbb{G}^{n}}$ and $f_{1} \rightarrow g_{1}, \ldots, f_{n} \rightarrow g_{n}$ in $\mathbb{G}^{\mathbb{F}}$, then

$$
f\left(f_{1}, \ldots, f_{n}\right) \rightarrow g\left(g_{1}, \ldots g_{n}\right) \text { in } \mathbb{H}^{\mathbb{P}}
$$

Exponentiation in finite duality

- set of finite relational structures modulo \leftrightarrow is a partially ordered set
- isomorphic to the set of core isomorphism types
- minimal [maximal] element: 1-element structure, with empty [full] relations
- join: disjoint union, meet: direct product,
- satisfies distributive laws, join irreducible = connected
- Heyting algebra (relatively pseudocomplemented)
- $\mathbb{F} \wedge \mathbb{G} \leq \mathbb{H} \Longleftrightarrow \mathbb{H}^{\mathbb{F} \times \mathbb{G}}=\left(\mathbb{H}^{\mathbb{G}}\right)^{\mathbb{F}}$ has a loop $\Longleftrightarrow \mathbb{F} \leq \mathbb{H}^{\mathbb{G}}$
- if \mathbb{G} is join irreducible with lower cover \mathbb{H}, then $\left(\mathbb{G}, \mathbb{H}^{\mathbb{G}}\right)$ is a dual pair

Theorem (Nešetřil, Tardif, 2010)

Let \mathbb{G} be a finite connected core structure. Then \mathbb{G} has a dual pair \mathbb{H}, i.e. $\{\mathbb{F} \mid \mathbb{F} \rightarrow \mathbb{G}\}=\{\mathbb{F} \mid \mathbb{H} \nrightarrow \mathbb{F}\}$, if and only if \mathbb{G} is a tree.

$\operatorname{End}(\mathbb{G}), \operatorname{Sym}(\mathbb{G})$ AND $\operatorname{Aut}(\mathbb{G})$

Definition

$\operatorname{End}(\mathbb{G})$ and $\operatorname{Sym}(\mathbb{G})$ are the induced subgraphs of $\mathbb{G}^{\mathbb{G}}$ on $\operatorname{Hom}(\mathbb{G}, \mathbb{G})$ and the set of permutations, respectively. $\operatorname{Aut}(\mathbb{G})=\operatorname{End}(\mathbb{G}) \cap \operatorname{Sym}(\mathbb{G})$.

Proposition

The components of $\operatorname{Sym}(\mathbb{G})[\operatorname{End}(\mathbb{G})]$ that contain an automorphism are isomorphic to the component of the identity.

Theorem (Gyenizse; 2013)

$\operatorname{Aut}(\mathbb{G})$ is a disjoint union of complete digraphs. Moreover, the number of elements in each component is the same and is a product of factorials.

Connectivity in End(G)

Example

The following digraph \mathbb{G} has Maltsev, join and meet semilattice polymorphisms.

It has only four endomorphisms: id, 0,1 and inversion, they are all isolated. However, id is connected to 0 in $\mathbb{G}^{\mathbb{G}}$:

$$
\text { id }=x \wedge 1 \rightarrow x \wedge a \rightarrow x \wedge 0=0
$$

Connectivity in $\mathbb{G}^{\mathbb{G}}$

Theorem (M, Zádori; 2012)

If \mathbb{G} is a connected reflexive digraph with Hobby-McKenzie polymorphisms, then $\operatorname{End}(\mathbb{G})$ is connected.

Theorem (Gyenizse; 2013)

Suppose, that $|\mathbb{G}| \geq 6$. Then $\mathbb{G}^{\mathbb{G}}$ is connected if and only if

- \mathbb{G} is empty,
- there exists $a \in G$ such that $a \rightarrow x$ for all $x \in G$, or
- there exists $a \in G$ such that $x \rightarrow a$ for all $x \in G$.

Theorem (Gyenizse; 2013)

If $|\mathbb{G}| \geq 6$ and $\operatorname{Sym}(\mathbb{G})$ is connected, then $\mathbb{G}^{\mathbb{G}}$ must be also connected.

The component of the identity

Definition

A map $f \in \mathbb{G}^{\mathbb{G}}$ is idempotent, if $f^{2}=f$, it is a retraction, if $f \rightarrow f$ and $f^{2}=f$, and it is proper, if $f \neq$ id.

Lemma (M, Zádori; 2012)

If \mathbb{G} is reflexive or symmetric and the component of the identity in End(\mathbb{G}) contains something other than id, then it contains a proper retraction.

Theorem

If the smooth component of id in $\mathbb{G}^{\mathbb{G}}$ (or in any submonoid) contains a non-permutation, then it contains a proper retraction.

Proposition

If \mathbb{G} is smooth and the component of id contains a constant map, then the smooth part of $\mathbb{G}^{\mathbb{G}}$ is connected (and \mathbb{G} is connected and contains a loop).

The component of the identity

Example

The digraph $\mathbb{G}=(\{0,1,2\} ; \neq)$ with 6 edges is connected, smooth, has algebraic length 1 , and the identity in $\mathbb{G}^{\mathbb{G}}$ is isolated.

Example

Let $\mathbb{H}=(H ; E)$ be the example with Maltsev, join and meet morphisms:

$$
H=\{0,1\}^{2} \quad \text { and } \quad E=\left\{(x, y, u, v) \in H^{2} \mid y=u\right\}
$$

Then the component of the identity for $\mathbb{G} \times \mathbb{H}$ is non-trivial (isomorphic to \mathbb{H}), but it does not contain a non-permutation.

Problem

Find a nontrivial smooth, connected, algebraic length 1 digraph with Taylor polymorphism for which id is isolated in $\mathbb{G}^{\mathbb{G}}$.

UNARY POLYNOMIALS OF \mathbb{G}

Definition

$\operatorname{Pol}_{1}(\mathbb{G})$ is the induced subgraph of $\mathbb{G}^{\mathbb{G}}$ on the set of unary polynomials of the algebra $\mathbf{G}=(G ; \operatorname{Hom}(\mathbb{G}))$.

Proposition

- $\operatorname{Pol}_{1}(\mathbb{G}) \leq \mathbf{G}^{G}$ is generated by the identity and the constant maps
- \mathbb{G} is an induced subgraph of $\mathrm{Pol}_{1}(\mathbb{G})$ on the set of constant maps
- $\operatorname{Pol}_{1}(\mathbb{G})$ is smooth if and only if \mathbb{G} is smooth
- If \mathbb{G} is smooth, connected and algebraic length 1 , then every component of $\mathrm{Pol}_{1}(\mathbb{G})$ has algebraic length 1

Proof.

For a polynomial $p=t\left(x, a_{1}, \ldots, a_{n}\right)$ we can find an oriented cycle in \mathbb{G}^{n} of algebraic length 1 going through $\left(a_{1}, \ldots, a_{n}\right)$. Then the polymorphism $t \in \operatorname{Hom}\left(\mathbb{G}^{n+1}, \mathbb{G}\right)=\operatorname{Hom}\left(\mathbb{G}^{n}, \mathbb{G}^{\mathbb{G}}\right)$ maps this cycle to a cycle in $\operatorname{Pol}_{1}(\mathbb{G})$.

Twin polynomials

Proposition

If \mathbb{G} is smooth, connected and algebraic length 1 , then the connectedness relation on $\mathrm{Pol}_{1}(\mathbb{G})$ is a congruence.

Definition

Let \mathbf{A} be an algebra. Two unary polynomials $p, q \in \operatorname{Pol}_{1}(\mathbf{A})$ are twins, if there exists a term t of arity $n+1$ and constants $\bar{a}, \bar{b} \in A^{n}$ such that

$$
p=t(x, \bar{a}) \quad \text { and } \quad q=t(x, \bar{b})
$$

The transitive closure of twin polynomials is the twin congruence τ of the algebra $\operatorname{Pol}_{1}(\mathbf{A})$.

Corollary

If \mathbb{G} is smooth, connected and algebraic length 1 , then the twin congruence blocks are connected.

Connectivity for SD(V) digraphs

Theorem

If \mathbb{G} is smooth, connected and algebraic length 1 , and the corresponding algebra $\mathbf{G}=(G ; \operatorname{Hom}(\mathbb{G}))$ generates a congruence join semi-distributive variety (omits types 1, 2 and $\mathbf{5}$), then $\mathrm{Pol}_{1}(\mathbb{G})$ is connected.

Proof.

- for $a \in G$ let η_{a} be the projection kernel of $\operatorname{Pol}_{1}(\mathbb{G})$ onto its a-th coordinate
- for any $a \in G$ and $p, q \in \operatorname{Pol}_{1}(\mathbb{G})$ we have $p \eta_{a} p(a) \tau q(a) \eta_{a} q$, so $\tau \vee \eta_{a}=1$
- use join semi-distributivity

$$
\tau \vee \alpha=\tau \vee \beta \Longrightarrow \tau \vee \alpha=\tau \vee(\alpha \wedge \beta)
$$

to derive $\tau \vee\left(\bigwedge_{a} \eta_{a}\right)=1$, that is $\tau=1$.

Structure of $\operatorname{Pol}_{1}(\mathbb{G})$

Problem

Let \mathbb{G} be smooth, connected, algebraic length 1 and with Taylor polymorphism. Describe the structure of $\operatorname{Pol}_{1}(\mathbb{G})$ modulo connectivity.

- We can assume that all twins of the identity are permutations
- The component of the identity has compatible join and meet
- From the loop lemma, every component that contains an idempotent has a loop, that is a proper retraction.

Theorem

If \mathbb{G} is smooth, connected, algebraic length 1 and $\mathbf{G}=(G ; \operatorname{Hom}(\mathbb{G}))$ generates a congruence modular variety, then $\operatorname{Pol}_{1}(\mathbb{G})$ is connected.

Conjecture

If \mathbb{G} is smooth, connected, algebraic length 1 and has Hobby-McKenzie polymorphisms for omitting types $\mathbf{1}$ and $\mathbf{5}$, then $\operatorname{Pol}_{1}(\mathbb{G})$ is connected.

Connectivity in Polid (\mathbb{G})

Theorem (M, Zádori; 2012)

If \mathbb{G} is reflexive, connected and has Gumm polymorphisms, then π_{1} and π_{2} are connected in the graph $\operatorname{Hom}^{\text {id }}\left(\mathbb{G}^{2}, \mathbb{G}\right)$ of idempotent binary morphisms.

Theorem

If \mathbb{G} is a smooth, connected, algebraic length 1 digraph which has Gumm polymorphisms, then the digraph $\operatorname{Pol}_{2}^{\text {id }}(\mathbb{G})$ on the set of idempotent binary polynomials of \mathbb{G} is connected (π_{1} and π_{2} are connected).

Proof.

Take a path id $=f_{0} \sim f_{1} \sim \cdots \sim f_{k}=c$ in $\operatorname{Pol}_{1}(\mathbb{G})$ for some constant c.

$$
\begin{aligned}
& d_{i}(x, x, y)=d_{i}\left(x, f_{0}(x), y\right) \sim d_{i}\left(x, f_{1}(x), y\right) \sim \cdots \sim d_{i}\left(x, f_{k}(x), y\right) \\
& =d_{i}(x, c, y)=d_{i}\left(x, f_{k}(y), y\right) \sim \cdots \sim d_{i}\left(x, f_{0}(y), y\right)=d_{i}(x, y, y), \text { and } \\
& p(x, y, y)=p\left(f_{0}(x), f_{0}(y), y\right) \sim p\left(f_{1}(x), f_{1}(y), y\right) \sim \cdots \sim p(c, c, y)=y
\end{aligned}
$$

IDEMPOTENT SUBALGEBRAS

Definition

An induced subgraph \mathbb{K} of $\mathbb{G}^{\mathbb{H}}$ is an idempotent \mathbb{G}-subalgebra, if K is closed under the idempotent polynomials of \mathbb{G}.
(Connection to CD absoption...)

Proposition

If $\mathrm{Pol}_{2}^{\text {id }}(\mathbb{G})$ is connected then every smooth idempotent subalgebra of $\mathbb{G}^{\mathbb{H}}$ is connected.

Musings

- Can we do something similar for arbitrary relational structures? What are the right notions of smoothness and algebraic length 1 ?
- Combinatorial vs. algebraic arguments
- We do not even have a complete connectivity description for reflexive or symmetric digraphs...
- How can we adapt the absoption work of Barto and Kozik from the context of $\mathbf{R} \leq \mathbf{A} \times \mathbf{B}$?
- Describe absorption in tame congruence theoretic terms.
- Relations to CSP: consistent set of maps, preserving solutions, maximal absorbing subuniverses vs. maximal idempotents, etc.

Thank You!

