Maltsev conditions and directed graphs

Miklós Maróti

University of Szeged

Melbourne, 2013. July 15-19.

A **digraph** is a pair $\mathbb{G} = (G; \rightarrow)$, where G is the set of **vertices** and $\rightarrow \subseteq G^2$ is the set of **edges**.

Definition

A **homomorphism** from \mathbb{G} to \mathbb{H} is a map $f : G \to H$ that preserves edges:

$$a \rightarrow b$$
 in $\mathbb{G} \implies f(a) \rightarrow f(b)$ in \mathbb{H} .

 $Hom(\mathbb{G},\mathbb{H})$ is the set of all homomorphisms from \mathbb{G} to \mathbb{H} .

Definition

The clone of **polymorphisms** of \mathbb{G} is $\operatorname{Hom}(\mathbb{G}) = \bigcup_{n=1}^{\infty} \operatorname{Hom}(\mathbb{G}^n, \mathbb{G})$.

Theorem (Larose, Zádori; 1997)

If a finite poset (reflexive, transitive, antisymmetric digraph) has Gumm polymorphisms

$$x \approx d_0(x, y, z),$$

 $d_i(x, y, x) \approx x$ for all $i,$
 $d_i(x, y, y) \approx d_{i+1}(x, y, y)$ for even $i,$
 $d_i(x, x, y) \approx d_{i+1}(x, x, y)$ for odd $i,$
 $d_n(x, y, y) \approx p(x, y, y),$ and
 $p(x, x, y) \approx y,$

then it has a near-unanimity polymorphism

$$n(y, x, \ldots, x) \approx \cdots \approx n(x, \ldots, x, y) \approx x.$$

Theorem (Larose, Loten, Zádori; 2005)

If a finite reflexive and symmetric digraph has Gumm polymorphisms, then it has a near-unanimity polymorphism.

Theorem (M, Zádori; 2012)

If a finite reflexive digraph has Gumm polymorphisms, then it has a near-unanimity polymorphism and totally symmetric polymorphisms

$$\{x_1,\ldots,x_n\}=\{y_1,\ldots,y_n\}\implies t(x_1,\ldots,x_n)\approx t(y_1,\ldots,y_n)$$

for all arities.

Theorem

If a finite symmetric digraph has Gumm polymorphisms, then it has a near-unanimity polymorphism.

Theorem (Kazda; 2011)

If a finite digraph has a Maltsev polymorphism

 $p(x, x, y) \approx p(y, x, x) \approx y,$

then it admits a majority polymorphism

 $m(y, x, x) \approx m(x, y, x) \approx m(x, x, y) \approx x.$

Theorem (Bulín, Delić, Jackson, Niven; 2013)

For every finite relational structure \mathbb{A} there exists a finite directed graph \mathbb{G} , such that almost all Maltsev conditions (Taylor term, Willard terms, Hobby-McKenzie terms, Gumm terms, edge term, Jonsson terms, near-unanimity term, but not Maltsev term) hold equivalently by \mathbb{A} and \mathbb{G} .

CONNECTIVITY

Definition

 \mathbb{G} is strongly connected if for any $a, b \in G$ there exists a directed path $a = a_0 \rightarrow a_1 \rightarrow \cdots \rightarrow a_n = b$ of length $n \ge 0$. \mathbb{G} is connected if for any $a, b \in G$ there exists an oriented path $a = a_0 \rightarrow a_1 \leftarrow \cdots \rightarrow a_n = b$ of length $n \ge 0$ where the arrows can point either way. The digraph \mathbb{G} is smooth, if its edge relation is subdirect (no sources and sinks).

Definition

The [strong, smooth] components of $\mathbb G$ are the maximal [strong, smooth] induced subgraphs of $\mathbb G.$

Definition

The **algebraic length** of a directed path is the number of forward edges minus the number of backward edges. The algebraic length of \mathbb{G} is the smallest positive algebraic length of oriented cycles (closed paths) of \mathbb{G} .

Proposition

If \mathbb{G}, \mathbb{H} are connected, smooth and \mathbb{G} has algebraic length 1, then $\mathbb{G} \times \mathbb{H}$ is connected and smooth.

Proof.

- for any a ∈ G there exists an oriented cycle of algebraic length 1 going through a
- for any $a \to b$ in \mathbb{G} there exists an oriented path from a to b of algebraic length 0
- for any $x \in H$, (a, x) and (b, x) are connected in $\mathbb{G} imes \mathbb{H}$

Proposition

If \mathbb{G} is smooth, algebraic length 1 and (strongly) connected, then \mathbb{G}^n is smooth, algebraic length 1 and (strongly) connected for all $n \ge 1$.

Write $\mathbb{G} \to \mathbb{H}$ iff there exists a homomorphism from \mathbb{G} to $\mathbb{H}.$

Proposition

 \to is a quasi-order on the set of finite digraphs. If $\mathbb G$ is a minimal member of the \leftrightarrow class of $\mathbb H,$ then

- every endomorphism of $\mathbb G$ is an automorphism,
- $\bullet \ \mathbb{G}$ is uniquely determined up to isomorphism, and
- \mathbb{G} is isomorphic to a induced substructure of \mathbb{H} .

Definition

 \mathbb{G} is a **core** if it has no proper endomorphism. The **core of** \mathbb{H} is the uniquely determined core structure in the \leftrightarrow class of \mathbb{H} .

Theorem (Barto, Kozik, Niven; 2008)

If $\mathbb G$ is smooth, algebraic length 1, and has a Taylor polymorphism, or equivalently a weak near-unanimity polymorphism

 $w(x,\ldots,x) \approx x$ and $w(y,x,\ldots,x) \approx \cdots \approx w(x,\ldots,x,y),$

then \mathbb{G} has a loop.

Corollary

The core of a smooth digraph with a Taylor polymorphism is a disjoint union of cycles.

Problem

Let $\mathbb G$ be a smooth, connected, algebraic length 1 digraph that has Gumm polymorphisms. Does $\mathbb G$ need to have a near-unanimity polymorphism?

Theorem

If $\mathbb{G} = (G; E)$ is smooth, connected, algebraic length 1, and has Maltsev polymorphism, then it has join and meet polymorphisms.

Proof.

•
$$\alpha = E \circ E^{-1}$$
 and $\beta = E^{-1} \circ E$ are equivalence relations (congruences)

• case 1: $(a, b) \in \alpha \land \beta$ and $a \neq b$

- $r : \mathbb{G} \to \mathbb{G} \setminus \{b\}$, r(x) = x for $x \neq b$ and r(b) = a is a retraction
- by induction we have join and meet polymorphisms on $r(\mathbb{G})$
- we can extend them to \mathbb{G} by splitting $\{a, b\}$ into a < b

• case 2:
$$\alpha \wedge \beta = 0$$

- by induction the digraph $\mathbb{G}/lpha = (\mathcal{G}/lpha; \mathcal{E}/lpha)$ has join and meet
- the digraph $\mathbb{E}/lpha = (E/lpha; \pi_2 \circ \pi_1^{-1})$ has join and meet
- the digraphs \mathbb{E}/α and \mathbb{G} are isomorphic via the map $\varphi \colon E/\alpha \to G$, $\varphi(x/\alpha, y/\alpha) = x/\beta \cap y/\alpha$

Let $\mathbb{H}^{\mathbb{G}}$ be the digraph on the set $H^{\mathcal{G}}$ with edge relation $f \to g$ iff

$$a \rightarrow b$$
 in $\mathbb{G} \implies f(a) \rightarrow g(b)$ in \mathbb{H} .

Proposition

- Hom(\mathbb{G}, \mathbb{H}) = { $f \in \mathbb{H}^{\mathbb{G}} : f \to f$ }
- $\mathbb{G}^n = \mathbb{G}^{\mathbb{L}_n}$ where $\mathbb{L}_n = (\{1, \dots, n\}; =)$

•
$$(\mathbb{H}^{\mathbb{G}})^{\mathbb{F}} = \mathbb{H}^{\mathbb{G} \times \mathbb{F}}$$

- $\mathbb{H}^{\mathbb{F}} \times \mathbb{G}^{\mathbb{F}} = (\mathbb{H} \times \mathbb{G})^{\mathbb{F}}$
- the composition map $\circ:\mathbb{H}^{\mathbb{G}}\times\mathbb{G}^{\mathbb{F}}\to\mathbb{H}^{\mathbb{F}}$ is a homomorphism
- If $f\to g$ in $\mathbb{H}^{\mathbb{G}^n}$ and $f_1\to g_1,\ldots,f_n\to g_n$ in $\mathbb{G}^{\mathbb{F}},$ then

$$f(f_1,\ldots,f_n) o g(g_1,\ldots g_n)$$
 in $\mathbb{H}^{\mathbb{F}}$

EXPONENTIATION IN FINITE DUALITY

- $\bullet\,$ set of finite relational structures modulo \leftrightarrow is a partially ordered set
- isomorphic to the set of core isomorphism types
- minimal [maximal] element: 1-element structure, with empty [full] relations
- join: disjoint union, meet: direct product,
- satisfies distributive laws, join irreducible = connected
- Heyting algebra (relatively pseudocomplemented)
- $\mathbb{F} \wedge \mathbb{G} \leq \mathbb{H} \iff \mathbb{H}^{\mathbb{F} \times \mathbb{G}} = (\mathbb{H}^{\mathbb{G}})^{\mathbb{F}}$ has a loop $\iff \mathbb{F} \leq \mathbb{H}^{\mathbb{G}}$
- \bullet if $\mathbb G$ is join irreducible with lower cover $\mathbb H,$ then $(\mathbb G,\mathbb H^{\mathbb G})$ is a dual pair

Theorem (Nešetřil, Tardif, 2010)

Let \mathbb{G} be a finite connected core structure. Then \mathbb{G} has a dual pair \mathbb{H} , i.e. $\{\mathbb{F} \mid \mathbb{F} \to \mathbb{G}\} = \{\mathbb{F} \mid \mathbb{H} \not\to \mathbb{F}\}$, if and only if \mathbb{G} is a tree.

 $End(\mathbb{G})$ and $Sym(\mathbb{G})$ are the induced subgraphs of $\mathbb{G}^{\mathbb{G}}$ on $Hom(\mathbb{G}, \mathbb{G})$ and the set of permutations, respectively. $Aut(\mathbb{G}) = End(\mathbb{G}) \cap Sym(\mathbb{G})$.

Proposition

The components of $Sym(\mathbb{G})$ [End(\mathbb{G})] that contain an automorphism are isomorphic to the component of the identity.

Theorem (Gyenizse; 2013)

 $Aut(\mathbb{G})$ is a disjoint union of complete digraphs. Moreover, the number of elements in each component is the same and is a product of factorials.

Example

The following digraph $\mathbb G$ has Maltsev, join and meet semilattice polymorphisms.

It has only four endomorphisms: id, 0, 1 and inversion, they are all isolated. However, id is connected to 0 in $\mathbb{G}^{\mathbb{G}}$:

$$\mathsf{id} = x \land 1 \to x \land a \to x \land 0 = 0.$$

Theorem (M, Zádori; 2012)

If \mathbb{G} is a connected reflexive digraph with Hobby-McKenzie polymorphisms, then $End(\mathbb{G})$ is connected.

Theorem (Gyenizse; 2013)

Suppose, that $|\mathbb{G}| \ge 6$. Then $\mathbb{G}^{\mathbb{G}}$ is connected if and only if

- G is empty,
- there exists $a \in G$ such that $a \rightarrow x$ for all $x \in G$, or
- there exists $a \in G$ such that $x \to a$ for all $x \in G$.

Theorem (Gyenizse; 2013)

If $|\mathbb{G}| \ge 6$ and Sym (\mathbb{G}) is connected, then $\mathbb{G}^{\mathbb{G}}$ must be also connected.

THE COMPONENT OF THE IDENTITY

Definition

A map $f \in \mathbb{G}^{\mathbb{G}}$ is **idempotent**, if $f^2 = f$, it is a **retraction**, if $f \to f$ and $f^2 = f$, and it is **proper**, if $f \neq id$.

Lemma (M, Zádori; 2012)

If \mathbb{G} is reflexive or symmetric and the component of the identity in $End(\mathbb{G})$ contains something other than id, then it contains a proper retraction.

Theorem

If the smooth component of id in $\mathbb{G}^{\mathbb{G}}$ (or in any submonoid) contains a non-permutation, then it contains a proper retraction.

Proposition

If \mathbb{G} is smooth and the component of id contains a constant map, then the smooth part of $\mathbb{G}^{\mathbb{G}}$ is connected (and \mathbb{G} is connected and contains a loop).

THE COMPONENT OF THE IDENTITY

Example

The digraph $\mathbb{G} = (\{0, 1, 2\}; \neq)$ with 6 edges is connected, smooth, has algebraic length 1, and the identity in $\mathbb{G}^{\mathbb{G}}$ is isolated.

Example

Let $\mathbb{H} = (H; E)$ be the example with Maltsev, join and meet morphisms:

$$H = \{0,1\}^2$$
 and $E = \{(x, y, u, v) \in H^2 \mid y = u\}.$

Then the component of the identity for $\mathbb{G} \times \mathbb{H}$ is non-trivial (isomorphic to \mathbb{H}), but it does not contain a non-permutation.

Problem

Find a nontrivial smooth, connected, algebraic length 1 digraph with Taylor polymorphism for which id is isolated in $\mathbb{G}^{\mathbb{G}}$.

Unary polynomials of ${\mathbb G}$

Definition

 $\mathsf{Pol}_1(\mathbb{G})$ is the induced subgraph of $\mathbb{G}^{\mathbb{G}}$ on the set of **unary polynomials** of the algebra $\mathbf{G} = (G; \mathsf{Hom}(\mathbb{G})).$

Proposition

- $\mathsf{Pol}_1(\mathbb{G}) \leq \mathbf{G}^G$ is generated by the identity and the constant maps
- $\bullet~\mathbb{G}$ is an induced subgraph of $\mathsf{Pol}_1(\mathbb{G})$ on the set of constant maps
- \bullet $\mathsf{Pol}_1(\mathbb{G})$ is smooth if and only if \mathbb{G} is smooth
- If G is smooth, connected and algebraic length 1, then every component of Pol₁(G) has algebraic length 1

Proof.

For a polynomial $p = t(x, a_1, ..., a_n)$ we can find an oriented cycle in \mathbb{G}^n of algebraic length 1 going through $(a_1, ..., a_n)$. Then the polymorphism $t \in \text{Hom}(\mathbb{G}^{n+1}, \mathbb{G}) = \text{Hom}(\mathbb{G}^n, \mathbb{G}^{\mathbb{G}})$ maps this cycle to a cycle in $\text{Pol}_1(\mathbb{G})$.

Proposition

If \mathbb{G} is smooth, connected and algebraic length 1, then the connectedness relation on $Pol_1(\mathbb{G})$ is a congruence.

Definition

Let **A** be an algebra. Two unary polynomials $p, q \in Pol_1(\mathbf{A})$ are **twins**, if there exists a term t of arity n + 1 and constants $\bar{a}, \bar{b} \in A^n$ such that

$$p = t(x, \overline{a})$$
 and $q = t(x, \overline{b})$.

The transitive closure of twin polynomials is the **twin congruence** τ of the algebra $Pol_1(\mathbf{A})$.

Corollary

If $\mathbb G$ is smooth, connected and algebraic length 1, then the twin congruence blocks are connected.

Theorem

If \mathbb{G} is smooth, connected and algebraic length 1, and the corresponding algebra $\mathbf{G} = (G; \operatorname{Hom}(\mathbb{G}))$ generates a congruence join semi-distributive variety (omits types 1, 2 and 5), then $\operatorname{Pol}_1(\mathbb{G})$ is connected.

Proof.

- for a ∈ G let η_a be the projection kernel of Pol₁(𝔅) onto its a-th coordinate
- for any $a \in G$ and $p, q \in \mathsf{Pol}_1(\mathbb{G})$ we have $p \eta_a p(a) \tau q(a) \eta_a q$, so $\tau \lor \eta_a = 1$
- use join semi-distributivity

$$\tau \lor \alpha = \tau \lor \beta \implies \tau \lor \alpha = \tau \lor (\alpha \land \beta)$$

to derive $\tau \lor (\bigwedge_a \eta_a) = 1$, that is $\tau = 1$.

Problem

Let \mathbb{G} be smooth, connected, algebraic length 1 and with Taylor polymorphism. Describe the structure of $\text{Pol}_1(\mathbb{G})$ modulo connectivity.

- We can assume that all twins of the identity are permutations
- The component of the identity has compatible join and meet
- From the loop lemma, every component that contains an idempotent has a loop, that is a proper retraction.

Theorem

If \mathbb{G} is smooth, connected, algebraic length 1 and $\mathbf{G} = (G; Hom(\mathbb{G}))$ generates a congruence modular variety, then $Pol_1(\mathbb{G})$ is connected.

Conjecture

If $\mathbb G$ is smooth, connected, algebraic length 1 and has Hobby-McKenzie polymorphisms for omitting types 1 and 5, then $\mathsf{Pol}_1(\mathbb G)$ is connected.

Theorem (M, Zádori; 2012)

If \mathbb{G} is reflexive, connected and has Gumm polymorphisms, then π_1 and π_2 are connected in the graph $\operatorname{Hom}^{\operatorname{id}}(\mathbb{G}^2,\mathbb{G})$ of idempotent binary morphisms.

Theorem

If \mathbb{G} is a smooth, connected, algebraic length 1 digraph which has Gumm polymorphisms, then the digraph $\operatorname{Pol}_2^{\operatorname{id}}(\mathbb{G})$ on the set of idempotent binary polynomials of \mathbb{G} is connected (π_1 and π_2 are connected).

Proof.

Take a path id = $f_0 \sim f_1 \sim \cdots \sim f_k = c$ in $Pol_1(\mathbb{G})$ for some constant c.

$$d_i(x, x, y) = d_i(x, f_0(x), y) \sim d_i(x, f_1(x), y) \sim \cdots \sim d_i(x, f_k(x), y)$$

= $d_i(x, c, y) = d_i(x, f_k(y), y) \sim \cdots \sim d_i(x, f_0(y), y) = d_i(x, y, y)$, and
 $p(x, y, y) = p(f_0(x), f_0(y), y) \sim p(f_1(x), f_1(y), y) \sim \cdots \sim p(c, c, y) = y.$

An induced subgraph \mathbb{K} of $\mathbb{G}^{\mathbb{H}}$ is an **idempotent** \mathbb{G} -subalgebra, if K is closed under the idempotent polynomials of \mathbb{G} .

(Connection to CD absoption...)

Proposition

If $\operatorname{Pol}_2^{id}(\mathbb{G})$ is connected then every smooth idempotent subalgebra of $\mathbb{G}^{\mathbb{H}}$ is connected.

- Can we do something similar for arbitrary relational structures? What are the right notions of smoothness and algebraic length 1?
- Combinatorial vs. algebraic arguments
- We do not even have a complete connectivity description for reflexive or symmetric digraphs...
- How can we adapt the absoption work of Barto and Kozik from the context of $\textbf{R} \leq \textbf{A} \times \textbf{B}?$
- Describe absorption in tame congruence theoretic terms.
- Relations to CSP: consistent set of maps, preserving solutions, maximal absorbing subuniverses vs. maximal idempotents, etc.

Thank You!